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Abstract10

Background: Ultrasound (US) simulation helps train physicians and medical students11

in image acquisition and interpretation, enabling safe practice of transducer manipulation12

and organ identification. Current simulators generate realistic images from reference scans.13

Although physics-based simulators provide real-time images, they lack su!cient realism,14

while recent deep learning-based models based on unpaired image-to-image translation im-15

prove realism but introduce anatomical inconsistencies. Purpose: We propose a novel16

framework to reduce hallucinations from generative adversarial networks (GANs) used on17

physics-based simulations, enhancing anatomical accuracy and realism in abdominal US18

simulation. Our method aims to produce anatomically consistent images free from artifacts19

within and outside the field of view (FoV).Methods: We introduce a segmentation-guided20

loss to enforce anatomical consistency by using a pre-trained Unet model that segments ab-21

dominal organs from physics-based simulated scans. Penalizing segmentation discrepancies22

before and after the translation cycle helps prevent unrealistic artifacts. Additionally, we23

propose training GANs on images in polar coordinates to limit the field of view to non-blank24

regions. We evaluated our approach on unpaired datasets comprising 617 real abdominal25

US images from a SonoSite-M turbo v1.3 scanner and 971 artificial scans from a ray-casting26

simulator. Data was partitioned at the patient level into training (70%), validation (10%),27

and testing (20%). Performance was quantitatively assessed with Frechet and Kernel In-28

ception Distances (FID and KID), and organ-specific ω2
histogram distances, reporting29

95% confidence intervals. We compared our model against generative methods such as30

CUT, UVCGANv2, and UNSB, performing statistical analyses using Wilcoxon tests (FID31

and KID with Bonferroni-corrected ε = 0.01, ω2
with ε = 0.008). A perceptual realism32

study involving expert radiologists was also conducted. Results: Our method significantly33

reduced FID and KID by 66% and 89%, respectively, compared to CycleGAN, and by 34%34

and 59% compared to the leading alternative UVCGANv2 (p → 0.01). No significant dif-35

ferences (p > 0.008) in echogenicity distributions were found between real and simulated36

images within liver and gallbladder regions. The user study indicated our simulated scans37

fooled radiologists in 36.2% of cases, outperforming other methods. Conclusions: Our38

segmentation-guided, polar-coordinates-trained CycleGAN framework significantly reduces39
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hallucinations, ensuring anatomical consistency and realism in simulated abdominal US40

images, surpassing existing methods.41

I. Introduction42

Abdominal ultrasound (US) is an essential non-invasive imaging technique for diagnosing various43

abdominal conditions2. E!ective clinical use requires specialists skilled in both image acquisition44

and interpretation. Typically, this training involves hands-on sessions with patients or volunteers,45

limiting scalability due to the need for devices and human subjects3.46

US simulation has emerged as a valuable training tool, allowing medical professionals to47

safely develop technical skills and procedural proficiency without needing real patients or equip-48

ment4,5. Simulators provide repeatable and controlled scenarios where users practice device49

manipulation5, organ localization6, and complex procedures7. Hence, these risk-free platforms50

contribute to improved clinical outcomes and increased confidence of clinicians to handle the51

complexities of real-world medical imaging. Additionally, US simulation supports applications52

like image registration8 and expands datasets for deep learning9, highlighting the necessity for53

realistic simulated images. High-fidelity simulations are crucial for achieving anatomical accuracy54

in training and clinical applications.55

Several methods have been proposed to generate synthetic US images, such as ray-casting56

algorithms applied to CT volumes10 or ray-tracing methods on deformable meshes11,12. While57

e”cient, these physics-based approaches lack the realism needed for clinical training in image in-58

terpretation and diagnosis13. Recent generative models using convolutional neural networks have59

gained considerable attention for their enhanced realism14. These models have primarily focused60

on simulating images from specific areas of interest, such as intravascular15 or fetal examina-61

tions16, and regions like the brain8, ovaries17, kidneys18, and musculoskeletal structures19. More62

complex regions, such as the abdominal cavity, have been less explored using these techniques.63

Previously, we applied an unpaired CycleGAN-based translation model20 to improve ray-casting64

simulations1. While this refinement enhances the overall realism of the generated images, it65

su!ers from hallucinated features typical of distribution matching losses21. In particular, the re-66

sulting scans include both unexpected organs in anatomically incorrect areas and distorted edges67

of the observable area captured by the device, typically referred to as the field of view (FoV).68
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Figure 1: Examples of di!erent artificial US scans obtained with a ray-casting model, our
previous approach based on a standard CycleGAN model1, and our improved method using a
segmentation-guided loss and polar coordinates. Anatomical masks are provided as reference.

In this study, we propose some novel changes to our previous approach1, with the goal of69

eliminating hallucinations and enabling the generation of anatomically consistent abdominal US70

scans from ray-casting-based simulations22. We achieve this by introducing a novel segmentation-71

guided loss, which leverages a pretrained Unet23 segmentation model that penalizes di!erences72

between organ segmentations in the input image and its reconstructed versions after completing73

a full translation cycle. This information propagates through the entire cycle, compelling the74

fake-to-realistic generator to preserve anatomical consistency in the forward cycle. Otherwise,75

any hallucinations and unrealistic artifacts introduced will be propagated in the realistic-to-fake76

generator, and detected by the segmentation network. This aids to eliminate one of the sources77

of mistake, the hallucinations within organs. Additionally, we propose training our models di-78

rectly in polar coordinates to remove irrelevant blank areas outside the field of view (FoV) and79

reduce artifacts in these regions. In summary, our key contributions with respect to our previous80

CycleGAN approach are threefold:81

1) We introduce an objective term that enforces consistency between organ segmentations82

in the input scan, and its equivalent after the realism improvement transformation. To the best83

of our knowledge, such an ”asymmetrical” approach for backpropagating anatomical knowledge84

have not been applied before to reduce hallucinations.85

2) We adapted the training process to be directly applied to images in polar coordinates,86

eliminating empty spaces outside the FoV and preventing FoV deformations.87

3) We demonstrate the model’s generalization capability—unlike our previous patient-specific88

approach, the new model can be trained on multiple subjects and e!ectively applied to simulate89

I. INTRODUCTION
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new individuals90

Experimental results confirm that our approach significantly improves realism and anatomical91

accuracy over previous CycleGAN-based methods1 and an improved ray-casting-based simulator.92

II. Related work93

The proposed model builds on top of our previous approach for improving realism in US sim-94

ulations1. Originally, the method was based on a standard CycleGAN model20, which allows95

image-to-image translation with unpaired samples. Technically, this model features two GANs,96

each defined by its own pair of generators and discriminators. In this context, it formally trans-97

lates images from the domain A of artificially generated US images to another set R of real US98

images (both described in Section IV.A.1.), and viceversa. Formally, let GA→R be the generator99

that translates an artificial image a ↑ A to R, and DR the discriminator that distinguishes100

between real images r and the translated ones GA→R(a). On the other hand, let GR→A be the101

generator that translates an image r ↑ R to the domain A while trying to avoid being detected102

by a discriminator DA. In the original CycleGAN definition, both pairs of networks are simul-103

taneously trained by optimizing a linear combination of losses, including a standard adversarial104

penalty LGAN, a cycle-consistency term Lcyc, and the identity loss Lidt.105

LGAN is defined per each pair of generator and discriminator as follows:

LGAN(GA→R, DR,A,R) = Er↭pdata(r)[log(DR(r)↓ 1)2]

+ Ea↭pdata(a)[log(DR(GA→R(a))
2],

LGAN(GR→A, DA,A,R) = Ea↭pdata(a)[log(DA(a)↓ 1)2]

+ Er↭pdata(r)[log(DA(GR→A(r))
2],

(1)

where E stands for the expected value of each corresponding data distribution, and each term is106

based on the least-squares GAN loss (LSGAN)24, which prevents vanishing gradient issues.107

To allow unpaired image-to-image translation, the training scheme incorporates an additional108

cycle-consistency loss Lcyc. This term enforce that translations produced by one generator are109

reversible and retain the original domain’s characteristics (Step 1, Figure 2). Formally, a forward110

cycle translates an image a ↑ A previously translated to domain R back to A (that is, a ↔111

GA→R(a) ↔ GR→A(GA→R(a)) ↗ a). Similarly, a reverse cycle ensures an image r ↑ R112

Last edited Date :



page 4 1st author name or however authors to be briefly identified

translated to domain A is brought back to R ( by doing r ↔ GR→A(r) ↔ GA→R(GR→A(r)) ↗113

r). Lcyc can then be defined as the sum of two losses:114

Lcyc(GA→R, GR→A) = Er↭pdata(r)[||GA→R(GR→A(r))↓ r||1]

+ Ea↭pdata(a)[||GR→A(GA→R(a))↓ a||1].
(2)

The identity loss Lidt regularizes the generators towards identity mappings, thereby biasing115

the models towards learning only what is needed to accurately generate realistic images:116

Lidt(GA→R, GR→A) = Ea↭pdata(a)[||GR→A(a)↓ a||1]

+ Er↭pdata(r)[||GA→R(r)↓ r||1].
(3)

III. Methods117

Figure 2 depicts a schematic representation of the training and test phases of our abdominal118

US simulation model. Our approach requires two sets of unpaired images for training, one with119

intermediate artificial US images (A) and one with real US scans (R). The first one is obtained120

by applying a ray-casting-based simulation algorithm22 on cross-sectional 2D slices retrieved from121

multiple 3D CT scans and their associated 3D segmentation masks, based on the coordinates of122

an artificial probe. These 2D images are then transformed to polar coordinates to eliminate blank123

spaces outside the FoV and avoid the generative model hallucinating features outside the area.124

Images in A, and their associated set of 2D segmentation masks (M), are used o#ine to train a125

segmentation model S, which remains fixed later on while training our SG-CycleGAN model. This126

approach learns to map images from A to R and viceversa using two image-to-image translation127

models GA→R and GR→A. The optimization minimizes a combined loss: a cycle-consistency term128

(Lcyc) and a segmentation-guided term (Lsg). The latter penalizes anatomical inconsistencies129

by comparing the predicted segmentations of the artificial scan and its reconstruction. During130

the testing phase, we input an intermediate artificial ultrasound image into the GA→R generator,131

provided it was generated using the same ray-casting approach utilized during training. Doing so132

will yield a more realistic version of the original image.133

In this study we propose to improve the previous approach by incorporating a novel134

segmentation-guided term (Lsg) that enforces consistency between segmentation predictions of135

III. METHODS
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Figure 2: Schematic representation of the training (top) and testing (bottom) phases of
our proposed approach for improving abdominal US simulation using a novel anatomically
consistent image-to-image translation model.

images from A and their reconstructed counterparts. By penalizing discrepancies between the136

segmentation maps of the original and reconstructed fake images, the model is encouraged to137

maintain realistic anatomical features throughout the cycle during fake-to-real translation process.138

This consistency reduces the likelihood of introducing unrealistic artifacts and hallucinations, as139

any deviations from expected anatomical structures are penalized during training.140

Figure 2 illustrates the proposed additional asymmetric objective, which integrates infor-141

mation about tissue locations within a ↑ A and enforces anatomical consistency between the142

original input and its reconstructed counterpart. Let S(x) represent a deep neural network that143

produces a pixel-wise multiclass segmentation of a given input image x. The model S is trained144

o#ine using images a ↑ A and the corresponding segmentation masks, remaining fixed during145

the CycleGAN training phase (Step 0, Figure 2). During CycleGAN training, each image a ↑ A146

is translated into the R domain by the generator GA→R. The resulting image is subsequently147

translated back into the original domain by the generator GR→A to obtain the reconstructed148

image (Step 1, Figure 2). Both the original image a and its reconstruction are segmented by S,149

yielding anatomical masks which are subsequently compared for consistency (Step 2, Figure 2).150

Formally, our proposed loss function, Lsg, penalizes di!erences between S(a) (the segmentation151
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map of an image a ↑ A) and S(GR→A(GA→R(a))) (the segmentation map of the reconstructed152

image after completing the full cycle):153

Lsg(GA→R, GR→A, S) = ↓
∑

S(a) log (S(GR→A(GA→R(a)))), (4)

By means of this term, anatomical knowledge is transferred between generators, forcing GA→R to154

preserve organs shape so that the reverse cycle through GR→A does not produce an inconsistent155

sample.156

In summary, the proposed training scheme is defined as a linear combination of the CycleGAN157

loss terms and the novel objective introduced above, namely:158

L(GA→R, GR→A, DA, DR, S) = LGAN(GA→R, DR,A,R)

+ LGAN(GR→A, DA,R,A)

+ ωcyc · Lcyc(GA→R, GR→A)

+ ωidt · Lidt(GA→R, GR→A)

+ ωsg · Lsg(GA→R, GR→A, S),

(5)

where ωcyc, ωidt and ωsg are hyperparameters that control the relative importance of each term159

in the final loss. Supplementary materials provide a flow chart with a visual representation of the160

calculation of the global loss throughout the training process.161

Notice that the identity loss and the segmentation-guided loss serve di!erent purposes in the162

model. The identity term enforces that each generator maintains features from the target domain163

that are already present in the source domain. On the other hand, our segmentation-guided loss164

focuses on preserving anatomical structure when transitioning from one domain to another.165

IV. EXPERIMENTAL SETUP IV.A. Materials
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IV. Experimental setup166

IV.A. Materials167

IV.A.1. Artificial US dataset168

We generated a set of simulated images using 13 contrast-enhanced CT volumes (60% male)169

from the VISCERAL’s Anatomy3 Challenge dataset25. To standardize the images, we manually170

cropped them to retain only the abdominal cavity, from the thoracic diaphragm to the pelvic171

inlet. Hounsfield Units (HUs) were then normalized to [0, 1] using histogram equalization. A 2D172

Gaussian smoothing kernel of size 50↘ 50 pixels (ranging from 34↘ 34 mm to 37.5↘ 37.5 mm,173

depending on voxel size) with a standard deviation of 2.5 pixels (approximately 1.7–1.875 mm)174

was applied to reduce high-frequency noise and improve uniformity.175

For intermediate simulation, an artificial probe was placed at various abdominal locations to176

extract clinically relevant cross-sectional slices from both the CT scans and their segmentation177

masks (see Segmentation masks dataset). These slices served as inputs for a modified version178

of the ray-casting simulation algorithm by Rub́ı et al.22 (see supplementary materials for further179

details). This process generated 926 artificial scans.180

IV.A.2. Segmentation masks dataset181

The anatomical masks used correspond to the cross-sectional slices extracted from the silver182

corpus segmentations of the 13 CT volumes in Artificial US dataset. The original dataset in-183

cluded segmentations of the spleen, liver, gallbladder, aorta, and kidneys. To provide additional184

anatomical references, we manually segmented the rib cage and spine.185

IV.A.3. Real US scan dataset186

Our real US dataset comprised 617 prospectively collected images from 11 volunteers (60% male,187

age = 27 ± 3 years) with no known abdominal conditions. A specialist acquired these scans188

during routine abdominal exams using a SonoSite-M turbo v1.3 US Scanner (FUJIFILM, Bothell,189

USA). The scanning parameters di!ered from those used in the ray-casting model, as there is no190

direct correspondence between the device and the algorithm. All images were exported in JPEG191

format at 640↘ 480 pixels.192
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IV.A.4. Dataset preprocessing and partition193

To standardize spatial dimensions and align with the transducer’s curvature, we applied a194

Cartesian-to-Polar transformation to both artificial and real ultrasound scans. This process in-195

volved calculating the center, inner and outer radii, and angular range (ε) for each image. For196

simulated images, these parameters were derived from the ray-casting algorithm, while for real197

scans, they were manually extracted using FoV masks. This transformation corrected the trans-198

ducer’s curvature and removed non-informative areas (see supplementary materials for a graphical199

explanation). The final images were resized to 256↘ 256 pixels and randomly partitioned at the200

patient level into training (70%, 8 patients), validation (10%, 2 patients), and test (20%, 3201

patients) subsets.202

IV.B. Architectures203

IV.B.1. Generator architecture204

We evaluated three generator architectures, all based on a Unet encoder-decoder network. The205

first was a standard Unet23 (Unet in our experiments), where the decoder was replaced with206

nearest-neighbor upsampling followed by a convolutional layer to prevent checkerboard artifacts1.207

The second was a modified Unet with bottleneck layers and residual connections26 (ResUnet in our208

experiments), implemented in two width variations. Lastly, we included the densely connected209

image-to-image translation generator by Dangi et al.
27 (DenseUnet in our experiments). All210

generators used a tanh activation function. Further architectural details are provided in the211

supplementary materials.212

IV.B.2. Discriminator architecture213

Following previous studies16,17,28, we employed a 70↘ 70 patchGAN29 as the discriminator. The214

network consists of four convolutional blocks, each with a 4↘4 kernel and a stride of 2. Instance215

normalization was used instead of batch normalization, as it has been shown to enhance diversity216

and prevent mode collapse30,31. Each block applies Leaky-ReLU activation, as commonly done217

in patchGANs29, progressively reducing spatial dimensions while increasing feature maps to 64,218

128, 256, and 512, respectively. A final 1-filter convolution, followed by a sigmoid activation219

function, produces the output probability for each patch.220

IV. EXPERIMENTAL SETUP IV.B. Architectures
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IV.B.3. Segmentation model221

The segmentation network S is based on a Unet architecture. The encoder consists of four222

convolutional blocks with 64, 128, 256, and 512 filters, each followed by 2 ↘ 2 max-pooling223

for downsampling. Each block comprised a sequence of a 3 ↘ 3 convolutional layer, a batch224

normalization operation, and a ReLU activation, repeated twice. A bottleneck layer with 1024225

filters precedes the decoder, which uses nearest-neighbor upsampling followed by convolutional226

layers with progressively fewer filters, from 512 down to 64. A final 1 ↘ 1 convolutional layer227

produces class logits, converted into probabilities using softmax activation. The network was228

trained to segment the liver, spleen, gallbladder, aorta, and kidneys. Since the kidney consists of229

two ultrasound-di!erentiable structures—the hyperechoic renal pelvis and the hypoechoic renal230

cortex—we treated them as separate classes, using weak annotations for each (see supplementary231

for further details).232

IV.C. Model configuration233

Hyperparameters were empirically selected based on validation set performance using Fréchet234

Inception Distance (FID). In tied cases, we visually inspected the results and chose parameters235

that produced more realistic and anatomically consistent images. Coe”cients ωcyc, ωidt, and ωsg236

were experimentally fixed to 10, 0.5, and 0.5, respectively. We found that a higher ωcyc improved237

cycle consistency in image translations. We trained the model for 200 epochs using Adam32
238

optimization with an initial learning rate of 2↘10↑4 and a batch size of 4. After 100 epochs, the239

learning rate was reduced linearly by 1
101 . The segmentation network S was trained o#ine using240

a multiclass cross-entropy objective, Adam optimization with an initial learning rate of 1↘ 10↑4,241

and a batch size of 16 for 150 epochs. The learning rate was decreased by a factor of 0.5 every242

time that the performance plateaued for 20 epochs, measured by the average Dice coe”cient.243

Hyperparameters were selected to maximize the average Dice score for all organs in the validation244

set.245

All CNNs, including the segmentation network, were implemented in Pytorch 1.10.0 and246

trained on a desktop workstation with an AMD Ryzen 9 5900X CPU and an NVIDIA GeForce247

RTX 3060 GPU (12GB RAM).248
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IV.D. Baselines for comparison249

We compared SG-CycleGAN with the ray-casting-based method10 used to generate the input250

images and four state-of-the-art image-to-image translation models. Given the limited number of251

models available for unpaired datasets in this task, we focused on CycleGAN-based approaches,252

which have shown promise in US simulation. First, we compared SG-CycleGAN to our previously253

published CycleGAN1, trained with images in Cartesian coordinates. Second, we included the254

Contrastive Unpaired Translation (CUT)33 model, which has been used as a baseline for obstetric255

US simulation34. To incorporate recent advances, we tested the UNet Vision Transformer cycle-256

consistent GAN (UVCGANv2)35, which integrates a U-Net with a Vision Transformer encoder.257

Finally, we included the Unpaired Neural Schrödinger Bridge (UNSB)36, a di!usion-based model258

that provides an alternative to GANs and has been applied to US simulation37. This selection259

covers both standard approaches and recent innovations in generative modeling for US simulation.260

IV.E. Evaluation metrics & statistical analysis261

Assessing the quality and realism of simulated US scans is challenging, as in any image genera-262

tion task38,39. The most widely used metrics are Fréchet Inception Distance (FID)40 and Kernel263

Inception Distance (KID)41, which have been applied in various US studies16,17,34,42. Both met-264

rics quantify the statistical distance between feature distributions of real and artificial images,265

extracted from an Inception v343 network pretrained on ImageNet. This comparison captures266

macro-level di!erences in speckle noise texture. A lower FID score indicates that the generated267

images better resemble real US scans in terms of noise and echogenicity. We used the intermedi-268

ate 768-feature layer to avoid highly specialized low-level descriptors34. For evaluation, we used269

the validated TorchFidelity implementation44. Statistical significance was assessed using one-270

tailed Wilcoxon signed-rank tests, with Bonferroni correction45 adjusting the significance level271

from 0.05% to 0.01% (5 comparisons). E!ect sizes were evaluated using Cohen’s d46, which272

measures di!erences relative to the pooled standard deviation. According to Cohen’s criteria,273

0.2 represents a small e!ect size and indicates that the di!erence between groups is noticeable274

but not substantial; 0.5 represents a medium e!ect size, suggesting a moderate di!erence that is275

likely to be meaningful in most contexts; and 0.8 represents a large e!ect size, indicating a sub-276

stantial di!erence between groups, which is often considered to be practically significant. Very277

small e!ects (below 0.2) indicate negligible di!erences that may not have practical relevance.278

IV. EXPERIMENTAL SETUP IV.D. Baselines for comparison
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Values greater than 1, on the other hand, are considered very large, and highlight a di!erence279

that is both statistically and practically significant.280

The ϑ2 distance47, commonly used in US simulation16, quantifies dissimilarities between281

image histograms:282

ϑ2(hA≃hB) =
1

2

∑

l=1..d

(hA[l]↓ hB[l])2

hA[l] + hB[l]
, (6)

where d is the number of histogram bins (50 in our case). While alternatives like Jensen-Shannon283

(JS) divergence48 compare entire histograms, we opted for ϑ2 as it is more sensitive to relative284

di!erences in individual bins.285

Histogram-based methods are a!ected by intensity shifts and contrast variations49. To286

evaluate potential mismatches in echogenicity, we compared intensities locally within segmented287

gallbladder, liver, and kidney regions. Segmentation masks were slightly eroded using a 5 ↘ 5288

structuring element to reduce edge irregularities. Pairwise ϑ2 distances from real US images289

were used as reference values. To ensure fair comparisons, scans with minimal tissue representa-290

tion were excluded, and histograms were normalized by the number of pixels within each mask.291

Statistical significance was tested using a one-tailed Wilcoxon rank-sum test with a Bonferroni-292

corrected threshold of 0.0083 (6 comparisons), alongside e!ect size analysis via Cohen’s d. Notice293

that if simulations are realistic, the ϑ2 distance distribution for each organ should closely match294

that of real scans, showing no significant di!erences. For all metrics, 95% confidence intervals295

(95% CI) were computed using bootstrap resampling (N = 1000).296

Finally, we assessed anatomical accuracy by comparing segmentation masks from our method297

and standard CycleGAN using mean Intersection over Union (mIoU). These masks were created298

by manually segmenting a set of 16 simulated images and comparing the resulting organ masks299

with those used as input to the physical model.300

IV.F. User study-based evaluation301

We further evaluated our approach through a custom-made online user study, implemented using302

the jsPsych JavaScript library50 (see supplementary materials for further details). The study303

comprised two experiments. The first experiment assessed experts’ ability to distinguish real304
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from simulated US images. Participants were shown a US scan and asked to classify it as305

real or simulated. The dataset included 45 images: 15 real US scans, 15 generated by our306

approach, and 15 by the original CycleGAN model. Classification accuracy was measured as the307

fraction of correctly identified real and fake images. The second experiment evaluated anatomical308

preservation in the generated images. Experts were presented with two simulated scans—one309

generated with and one without the segmentation-guided term—and asked to select the scan310

with better anatomical preservation. The original segmentation mask was provided as a reference.311

This test included 10 scan pairs covering typical abdominal capture windows such as intercostal,312

subcostal margin, longitudinal, oblique, and transverse views. A total of 16 clinicians, all experts313

in US imaging, participated in the study, most of whom were a”liated with Sociedad Argentina314

de Ultrasonido en Medicina y Bioloǵıa (SAUMB).315

V. Results316

We conducted a comprehensive evaluation of the proposed approach, using both qualitative and317

quantitative approaches. Our method was compared to state-of-the-art techniques outlined in318

Subsection IV.D., elaborated upon in Subsection V.A.2.. Additionally, an ablation study was319

carried out to evaluate the impact of each design choice on the final results, detailed in Subsec-320

tion V.B..321

V.A. Simulation performance322

V.A.1. Qualitative evaluation323

Figure 3 presents example simulations generated using the original CycleGAN in Cartesian coor-324

dinates1, the same model in polar coordinates, and our SG-CycleGAN. The samples correspond325

to di!erent abdominal windows commonly used in clinical analyses.326

The Cartesian CycleGAN results exhibit FoV deformations in all scans, mainly as irregular327

edges (Figures 3 (a) and (d)). In some cases, these distortions remove anatomical structures,328

such as part of the liver (Figures 3 (a) and (c)), the aorta (Figures 3 (c) and (d)), or the kidneys329

(Figures 3 (a) and (e)). Alternatively, using polar coordinates ensures images that are consistent330

with the input FoV, with both the standard CycleGAN and our proposed SG-CycleGAN, preserving331

V. RESULTS
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Anatomical
reference

Standard CycleGAN
(Polar Coord.)

SG-CycleGAN
(Ours)

Standard CycleGAN
(Cartesian Coord.)

Liver Kidney Spleen Gallbladder Aorta Bones

Inconsistencies Anatomical preservation

(a)

(b)

(d)

(e)

(c)

Figure 3: Qualitative results for abdominal US simulation obtained using a standard Cycle-
GAN trained in Cartesian and polar coordinates and our proposed SG-CycleGAN approach.
Dotted lines indicate inconsistent organs (yellow) and their improved counterparts (green).
From top to bottom: (a) right subcostal margin, (b) longitudinal, (c) oblique, and (d,e) right
and left intercostal acquisition windows.
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all the organs that are present in the images.332

Figures 3 (a)–(c) show that standard CycleGANs introduce inhomogeneities in the liver, ap-333

pearing as hallucinated shadows (Figures 3 (a) and (c)) or anatomically inconsistent hyperechoic334

structures (Figures 3 (b) and (c)). Our segmentation-guided approach preserves liver structure,335

maintaining homogeneous echogenicity (green contours).336

Figures 3 (d) and (e) present results for windows that include part of the kidney. Training with337

Cartesian coordinates produces unrealistic kidneys, with artifacts such as hyperechoic reflections338

that are inconsistent with this anatomical area (Figure 3 (d)), or intensities of the renal pelvis339

below the usual echogenicities (Figure 3 (e)). Similarly, Figures 3 (c) and (d) show poor aorta340

representations, which disappear into larger anechoic areas. While polar coordinates mitigate this341

issue, they still generate anatomical inconsistencies (e.g., hyperechoic streaks in the kidney or342

di!use spleen edges in Figure 3 (e)). Our approach better preserves organs, yielding anatomically343

accurate results for the gallbladder (Figure 3 (a)), aorta (Figures 3 (b) and (c)), bones (Figures 3344

(c)–(e)), kidneys (Figures 3 (a), (d), and (e)), and spleen (Figure 3 (e)). On this last area, a345

better scattering e!ect can be observed on top of the artifact generated by the skin (top green346

arrow), as well as more defined interfaces at the bottom (bottom green arrow).347

Figure 4 visually compares our method to other baselines. Further qualitative results are pro-348

vided in the supplementary materials. The previous CycleGAN model reduces the FoV, removing349

image regions (e.g., the missing backbone in Figure 4 (c) or the truncated kidney in Figure 4350

(e)). CUT better preserves anatomical structures but still producing hallucinations such as a351

hyperechoic artifact in the liver (Figure 4 (a)) and an anechoic tubular formation in the kidney352

(Figure 4 (c)). It also fails to maintain spleen integrity (Figure 4 (e)). UVCGANv2 struggles353

to maintain structures, reducing gallbladder size (Figure 4 (b)) and distorting kidneys (Figures 4354

(c) and (e)). The UNSB model preserves structures like the liver, gallbladder, and vessels (see355

Figure 4 (a), (b) and (d), respectively), but struggles with kidney structures, where it halluci-356

nates anechoic formations (Figure 4 (c) and (e)). Additionally, it fails to simulate the skin layer357

artifacts, which are captured in the other models. Finally, our model corrects the FoV limitations358

observed in our previous version, while also preserving all the anatomical structures provided in359

the ray-casting based input.360
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GallbladderLiver Kidney Bones Spleen Inconsistencies

Figure 4: Qualitative examples for each model and their associated segmentations as refer-
ence.Yellow arrows indicate inconsistencies.

V.A.2. Quantitative evaluation361

Table 1 compares our approach to all baselines detailed in Section IV.D.. While all generative362

models outperform the physics-based simulator, our SG-CycleGAN achieves statistically significant363

reductions in FID (80%) and KID (97%) (p < 0.01). Very large e!ect sizes (Cohen d = 84.24364

and 79.97) further support these findings. Among baselines, UVCGAN performed best, but still365

lags behind our method, with substantial Cohen e!ect sizes (d = 10.43 for FID and d = 9.20 for366

KID).367

Our SG-CycleGAN also exhibits ϑ2 distances within the liver and gallbladder that closely368

resemble those observed between real images (Table 1). Figure 5 (A) provides a detailed analysis369

of this metric for each tissue, with colored boxplots representing the distribution of pairwise ϑ2
370

distances between simulated and real US images, and gray boxplots representing the reference371

distribution between real scans. Although these cannot be compared directly one other for being372

calculated using di!erent samples, it can be observed that methods incorporating generative373

approaches achieve ϑ2 distances that distribute approximately similar as in real images, for all374

organs. All generative models produce echogenicities in the gallbladder that are statistically375

indistinguishable from those in real US images, with p values greater than 0.021. However, it376

should be noted that our model, like CUT and UVCGANv2, presents closer mean values and377

a very low Cohen’s d value (< 0.09), indicating a very small e!ect size compared to the rest378
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models, which have values close to 0.2. Within the liver, our SG-CycleGAN and UNSB model379

achieved distances comparable to the distances observed between real images. In this case,380

the statistical tests performed between these models and real US images showed no statistically381

significant di!erences, with p > 0.127 for all comparisons. On the contrary, performing the same382

comparison between CUT, CycleGAN and UVCGANv2 exhibited statistically significant di!erences383

(p < 0.008). Nonetheless, all models exhibit a small e!ect size (Cohen’s d < 0.16), with the384

UNSB model standing out with a Cohen’s d of 0.01. In the the kidney, the CycleGAN and the385

UNSB did not exhibit statistically significant di!erences when compared to real US images, with386

p > 0.183, showing a very small e!ect size (Cohen d < 0, 09).387

To further illustrate echogenicity similarities, Figure 5 (b) presents histograms of cumulative388

intensity distributions for each organ. These histograms di!er from those used for organ-specific389

ϑ2 comparisons in Table 1 and Figure 5 (A). Consistent with previous observations, our model390

produces intensities that closely resemble real images, particularly in the liver and gallbladder.391

For the kidney, UNSB outputs are more similar to real images.392

We also report training and inference time comparisons in the supplementary material.393

SG-CycleGAN increased training time from 95 seconds (standard CycleGAN) to 127 seconds394

per epoch, similar to CUT and notably faster than UVCGANv2 and UNSB. For inference, SG-395

CycleGAN and CycleGAN were the fastest at 0.0813 seconds per scan, while other models required396

2–3 times longer.397

V.B. Ablation analysis398

V.B.1. Quantitative evaluation399

Table 2 presents results from CycleGAN models trained with di!erent strategies. Models using400

polar coordinates (rows 2 to 4) achieved better FID and KID scores than the Cartesian-based401

model (row 1). However, improvements in ϑ2 distances appeared only in the gallbladder and402

liver when combined with the segmentation-guided loss and LSGAN objective. Regarding adver-403

sarial loss, LSGAN outperformed the vanilla loss (Table 2 rows 2 and 3). The best results were404

achieved by incorporating the segmentation-guided loss (row 4), which further improved FID and405

KID scores. In terms of anatomical preservation relative to ground truth label maps, our model406

achieved a higher overall mIoU (0.68) than the standard CycleGAN (0.59). For individual organs407
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Figure 5: Organ-wise quantitative evaluation. (A) Box plots illustrating the distribution
of pairwise ϑ2 distances between pairs of simulated and real US images for each organ of
interest (colored), and between pairs of real US images (gray).p-values are included for
all comparison where no statistical di!erences observed. (B) Histograms representing the
distribution of echogenicity values for each organ, for simulated (colored) and real (gray)
images.

Generator architectures

→ →

Without 

With 

Generator architectures

Figure 6: FID and KID results for di!erent architectures of generator models. Each network
was trained with (right) and without (left) our proposed loss term. The bubble size is
proportional to the number of parameters of each model, indicated in millions (M) on top
of each one.
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Table 1: Quantitative comparison of the proposed model with respect to other alternatives in
terms of FID and KID distances (lower value, marked as ⇐, is better), and mean ϑ2 distances
for di!erent organs of interest. Asterisks (*) next to FID and KID values indicate statistically
significant di!erences, when compared to our approach (p < 0.01). ϑ2 distances between
pairs of real scans are included as a reference (closer to this reference is better). Daggers (†)
in ϑ2 distances indicate no statistical di!erences with the real scans (p > 0.008). Sub-indices
indicate Cohen’s d values. Best values are indicated in bold. Last row corresponds to the
number of real and simulated US used to calculate each metric.

Model
FID ⇐ KID ⇐(↘10↓3) ϑ2 [95% CI]

[95% CI] [95% CI] Liver Kidney Gallbladder

Ray-casting22 1.73 [1.69 - 1.77]*84.24 5.02 [4.85 - 5.19]*79.97 0.23 [0.02 - 0.54]0.21 0.17 [0.03 - 0.34]†0.06 0.09 [0.0 - 0.50]0.90

CycleGAN1 0.99 [0.96 - 1.03]*48.63 2.61 [2.48 - 2.74]*46.83 0.21 [0.07 - 0.41]0.13 0.19 [0.03 - 0.47]0.09 0.28 [0.02 - 0.65]†0.22

CUT33 0.80 [0.76 - 0.84]*27.25 1.90 [1.74 - 2.06]*26.79 0.21 [0.06 - 0.42]0.12 0.28 [0.05 - 0.55]0.74 0.26 [0.0 - 0.66]†0.09

UVCGANv235 0.48 [0.45 - 0.51]*10.43 0.69 [0.59 - 0.79]*9.20 0.17 [0.03 - 0.43]0.16 0.23 [0.03 - 0.52]0.41 0.25 [0.00 - 0.54]†0.03

UNSB36 0.95 [0.90 - 0.99]*36.23 2.42 [2.26 - 2.58]*37.31 0.19 [0.04 - 0.46]†0.01 0.18 [ 0.02 - 0.50]†0.03 0.22 [0.05 - 0.45]†0.23

SG-CycleGAN (ours) 0.33 [0.32 - 0.35] 0.28 [0.25 - 0.31] 0.18 [0.05 - 0.40]†0.13 0.22 [0.03 - 0.48]0.33 0.25 [0.00 - 0.53]†0.07

Real US - - 0.19 [0.00 - 0.51] 0.18 [0.00 - 0.45] 0.24 [0.00 - 0.48]

Number of scans R|A 213|213 213|213 40|90 16|48 12|28

(liver, kidney, gallbladder), our model outperformed CycleGAN with IoU values of 0.84, 0.93, and408

0.86, respectively, compared to 0.75, 0.89, and 0.81, demonstrating superior anatomical fidelity.409

We also analyzed the impact of di!erent generator architectures by comparing FID and KID410

metrics across network types and backbone sizes (Figure 6). The standard Unet consistently out-411

performed ResUnets and DenseUnets in FID and KID scores. Additionally, adding Lsg improved412

performance across all networks, except for the DenseUnet with the smallest capacity (0.2 million413

parameters).414

V.B.2. Qualitative e!ect of using polar coordinates415

To assess the impact of using polar instead of Cartesian coordinates for training, Figure 7 com-416

pares input simulations from the ray-casting algorithm with their improved versions using both417

alternatives. All scans share the same FoV, outlined in green. With Cartesian coordinates, the418

model either restricts the original FoV (left edge of image (a)) or introduces organs outside of it419

(bottom of both scans). In Figure 7 (b), the network hallucinates large shadowed areas near the420

contours while partially preserving original image details (yellow arrow, left side), creating false421

tissue reflections beyond the incorrect FoV. In contrast, images generated in polar coordinates422

remain confined to the pre-defined FoV, free of deformations or hallucinated artifacts. Figure 7423
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Table 2: Evaluation of the ablation test in terms of FID, KID (lower value, marked as ⇐, is
better) and mean ϑ2 distances for di!erent organs. Asterisks (*) next to FID and KID values
indicate statistically significant di!erences (p < 0.016), when compared to our approach. ϑ2

distances between pairs of real scans are included as a reference (closer to this reference
is better).Daggers (†) in ϑ2 distances indicate no statistical di!erences with the real scans
(p > 0.012). Sub-indices indicate Cohen’s d values. The best values are indicated in bolds.
The last row corresponds to the number of real and simulated US images used to calculate
each metric respectively.

Model
Adversarial Coordinate FID ⇐ KID ⇐ (↘10↓3) ϑ2

loss space [95% CI] [95% CI] Liver Kidney Gallbladder

CG Vanilla C 0.99 [0.96-1.03]*48.63 2.61 [2.48 - 2.74]*46.83 0.21 [0.07 - 0.41]0.13 0.19 [0.03 - 0.46]0.09 0.28 [0.02 - 0.65]0.22

CG Vanilla P 0.73 [0.71 - 0.76]*36.12 1.82 [1.72 - 1.92]*38.93 0.26 [0.09 - 0.52]0.49 0.29 [0.03 - 0.56]0.85 0.23 [0.00 - 0.53]0.08

CG LSGAN P 0.42 [0.40 - 0.44]*7.48 0.38 [0.33 - 0.43]*9.64 0.21 [0.05 - 0.44]†0.05 0.22 [0.04 - 0.47]0.25 0.27 [0.00 - 0.54]0.04

SG LSGAN P 0.33 [0.32 - 0.35] 0.28 [0.25 - 0,31] 0.18 [0.05 - 0.40]†0.13 0.22 [0.03 - 0.48]0.34 0.25 [0.00 - 0.53]†0.07

Real US - - 0.19 [0.00 - 0.51] 0.18 [0.00 - 0.45] 0.24 [0.00 - 0.48]

Number of scans (R|A) 213|293 213|293 40|90 16|48 6|27

Abbreviations: CG, Standard CycleGAN; SG, SG-CycleGAN; Vanilla, Jensen-Shannon divergence loss;

LSGAN, least squares GAN loss; C, cartesian; P, Polar

also includes patches illustrating speckle noise patterns. Unlike input simulated scans, Cartesian-424

based outputs exhibit randomly oriented patterns, misaligned with the US transducer. Polar425

coordinates mitigate this issue, producing more realistic lateral speckle orientations consistent426

with the convex transducer’s azimuthal angle.427

V.B.3. Qualitative e!ect of the generator architecture428

Figure 8 compares results from SG-CycleGAN using di!erent generator architectures. All gen-429

erative models enhance overall brightness, but the ResUnet introduces bright artifacts that are430

anatomically inconsistent, such as in the renal pelvis (Figure 8 (a), yellow arrow) and an un-431

segmented region (Figure 8 (b), green arrow). Additionally, ResUnet produces an overly blurred432

and poorly defined speckle pattern. In contrast, the Unet and DenseUnet backbones yield better433

intensity distributions while preserving organ shapes and boundaries (e.g., the aorta in Figure 8434

(a), red arrow). The kidney (Figure 8 (a), yellow arrows) also shows well-defined interfaces both435

externally and within the renal pelvis. These networks generate more realistic speckle noise pat-436

terns (e.g., in the liver, Figure 8 (b)), though DenseUnet hallucinates interfaces in unsegmented437

areas compared to Unet (green arrow).438
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(a)

(b)

FoV deformation

Figure 7: Comparison of simulated images with CycleGANs trained on di!erent coordinate
systems. Green boundaries indicate the original FoV.

V.B.4. User study439

Figure 9 presents the user survey results. Figure 9.A) shows bar charts of user accuracy in clas-440

sifying images—generated by CycleGAN, SG-CycleGAN, or real US, as fake or real. The average441

and standard deviation for each type are also included. Lower accuracy indicates more frequent442

misclassification of fake images as real and vice versa. Most participants correctly identified443

CycleGAN-generated images as fake with high accuracy (98%), reflecting their lower realism.444

However, for SG-CycleGAN images, accuracy averaged 63.75%, meaning 36.25% were mistaken445

for real. This trend is also evident in real US scan classification, where expert accuracy averaged446

below 80%. Figure 9.B) presents a pie chart summarizing radiologists’ responses on anatomi-447

cal preservation. When asked about the preservation of the anatomy in fake images generated448

with both synthetic methods, 81.6% of cases favored SG-CycleGAN to be more anatomically449

consistent over CycleGAN.450
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Figure 8: Comparison of simulation results obtained using an SG-CycleGAN with Unet,
ResUnet, or DenseUnet based generator.
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Figure 9: User study results. A) Classification accuracy for each simulation model and real
scans as a bar per participant. Additionally, a bar plot with average accuracy per method.
B) Pie chart comparing responses about which generative model performs better in terms
of anatomy conservation.

VI. Discussion451

VI.A. E!ect of our segmentation-guided loss452

Simulating abdominal US images is challenging. While physics-based approaches generate453

anatomically plausible images, their echogenicities remain unrealistic. In contrast, CycleGANs454

enhance visual quality but introduce hallucinated artifacts that distort the underlying anatomy1.455

These inconsistencies appear as non-uniform echogenicity patterns within organs (yellow dotted456

lines in Figure 3), a common issue in unpaired models relying on distribution-matching losses21.457

To alleviate this issue, we proposed a segmentation-guided loss, penalizing segmentation458

mismatches before and after completing the cycle. This term prevents the generator GA→R to459

introduce artifacts that cannot be removed through the reversed cycle GR→A, without any extra460
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annotation. The anatomical labels from ray-casting simulations su”ce for training. As seen in461

Figure 3 (green lines), our approach produces well-defined organ interfaces and homogeneous462

speckle noise patterns. Compared to existing methods (Figure 4), our loss function preserves463

anatomical structures while preventing hallucinated patterns within them.464

Quantitatively, our model significantly reduces FID and KID scores by 66% and 89%, re-465

spectively (p → 0.01), as shown in Table 2. Our model not only presents the lowest FID and466

KID values, but when comparing with the others, we obtain high Cohen’s d values (> 9.20),467

which imply a very large e!ect size between the simulations of our model and the others. Lower468

FID scores suggest improved statistical similarity to real images, resulting from the reduction in469

hallucinations and unusual artifacts in the constrained areas. This ensures that simulated images470

closely resemble real ones, making them more valuable for medical training. Furthermore, our471

segmentation-guided loss enhances anatomical accuracy, improving mIoU by up to 15.3% over472

standard CycleGAN. This advantage is reinforced by our user study, where SG-CycleGAN was473

rated as more anatomically consistent in 81.9% of cases compared to the standard CycleGAN.474

VI.B. Impact of training in polar coordinates475

Another key contribution of our work is migrating CycleGAN training from Euclidean to polar476

coordinates. As illustrated in Figure 3 and highlighted by the yellow arrows in the intermediate477

column of Figure 7, CycleGANs trained in Euclidean coordinates produce jagged edges, distort478

the FoV, or introduce warped regions. This occurs because the network lacks prior knowledge479

of the region of interest, making it di”cult to distinguish between acoustic shadows and empty480

areas outside the FoV.481

Training in polar coordinates addresses this issue by constraining the network’s focus to482

the relevant area while excluding blank spaces. This prevents the model from having to learn483

the FoV shape itself, allowing for better utilization of its capacity. As a result, the model484

more accurately mimics speckle noise patterns (see zoomed patches in Figure 7) and better485

leverages the segmentation-guided loss, as evidenced by improvements in FID and KID values486

(Table 2). Additionally, since areas outside the FoV are absent in the input, the network naturally487

avoids generating artifacts in those regions. This is evident in Figure 7, where all images exhibit488

consistent FoVs without irregularities or hallucinations beyond the designated area.489

VI. DISCUSSION VI.B. Impact of training in polar coordinates
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VI.C. Influence of the generator architecture490

Our approach proves e!ective across di!erent generator architectures and network sizes, consis-491

tently improving FID and KID values when using the segmentation-guided loss (Figure 6). Among492

the tested architectures, the standard Unet outperformed ResUnet and DenseUnet, aligning with493

previous findings1. As illustrated in Figure 8, Unet generates anatomically more coherent outputs494

than ResUnet. This discrepancy is likely due to the absence of skip connections in ResUnet’s495

bottleneck layers. Without these connections, the decoder must reconstruct anatomical struc-496

tures using only low-level features from earlier layers, leading to information loss. The bottleneck497

acts as a lossy compression of the input, making it di”cult for the decoder to reconstruct organs498

without introducing unrealistic artifacts.499

VI.D. Advantages of SG-CycleGAN500

Integrating all our proposed modifications into the standard CycleGAN framework resulted in a501

robust generative model that outperforms several state-of-the-art approaches in realism. We502

compared SG-CycleGAN against recent deep learning models, including Vision Transformers503

(UVCGANv2) and conditional di!usion models (UNSB). As shown in Table 1, these methods504

reduced FID and KID scores relative to the ray-casting model, with Vision Transformers achiev-505

ing the largest improvement. However, SG-CycleGAN achieved the lowest FID and KID values506

(p = 0.33 ↘ 10↑3 and p = 0.25 ↘ 10↑3, respectively), with a very large e!ect size (Cohen’s507

d > 9.20). Our model also closely matches real ultrasound (US) echogenicity distributions. As508

shown in Table 2, ϑ2 tests indicate no statistically significant di!erences in liver and gallbladder509

echogenicities between SG-CycleGAN-generated images and real scans (p > 0.008). The e!ect510

size is minimal (Cohen’s d = 0.07 for the gallbladder and d = 0.13 for the liver), suggesting511

that our model generates tissue echogenicities within the natural variability of real US images.512

While UNSB achieves a slightly better match for the liver (d = 0.01), our approach still per-513

forms competitively, as showed in Figure 5 (B). From a qualitative perspective, SG-CycleGAN514

produces more realistic scans. If the generated images were easily distinguishable from real ones,515

expert classification accuracy would approach 100%. While this was true for standard CycleGAN,516

experts misclassified 36% of SG-CycleGAN images as real (Figure 9). This suggests that our517

model generates anatomically consistent and realistic US scans, making it a promising tool for518

improving ultrasound training applications.519
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VI.E. Limitations520

The primary limitation of this study is its focus on healthy subjects, as all experiments were521

conducted on individuals without pathologies or lesions. While we have demonstrated that our522

approach reduces hallucinations in simulated scans, we cannot guarantee the same for pathologi-523

cal cases or lesions. Future work should extend the evaluation to pathological cases to assess the524

method’s robustness in simulating complex anatomical variations. Nevertheless, preventing hallu-525

cinations in healthy cases is already a promising step forwards, as it avoids introducing unrealistic526

artifacts that could be interpreted as pathologies.527

It should be pointed out also that, despite the model exhibiting a substantial reduction in528

hallucinations compared to its original counterpart, we still observed unrealistic features occurring529

outside the segmented areas (e.g., around organ interfaces in Figure 3 (d)). In our current setup,530

we utilized masks for six di!erent tissues available in our set of volumetric segmentations, so531

anatomical inconsistencies outside these regions are to be expected. In particular, we observed532

this phenomenon to occur in areas such as the stomach or the pancreas, which are not segmented533

in our training set. Clinically, these inaccuracies could a!ect the usefulness of the simulations534

in training scenarios where detailed anatomy of these regions is critical, such as as in surgical535

planning or procedural training, where a precise understanding of the anatomical structures is536

crucial.537

Nevertheless, notice that the proposed approach is general enough to include any other538

organ without considerable modifications, should they are already available for the ray-casting539

based simulator (e.g. by segmenting the organs from the input CT scans). While these masks540

are essential for training the segmentation-guided CycleGAN, notice they do not increase the541

annotation costs beyond that already incurred in the first stage of the pipeline. Furthermore,542

these input segmentations are obtained from CT scans and not from US images, as it is needed543

for other US simulation approaches17,18. Therefore, accurate CT segmentation models such as544

TotalSegmentator51 and Auto3DSeg52 might be a promising alternative to automate this step545

and ease the incorporation of new simulation cases.546

Notice that our image translation approach was trained and evaluated using images simulated547

with a single ray-casting approach with a fixed configuration, and with real scans obtained from548

a single US device. Consequently, it does not generalize to produce images from other probes or549

VI. DISCUSSION VI.E. Limitations
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devices. However, notice also that our proposed model is general enough to be retrained with550

images from other sources. Hence, by changing A and/or R with sets of artificial and/or real551

scans generated with a di!erent simulator or US device, respectively, or under di!erent imaging552

setups, the model would adapt to produce new artificial images for other practical applications.553

As with all generative models, another limitation of this study is the lack of a trustworthy554

automated evaluation metric. The best approach for assessing the performance of US simulation555

algorithms is to run user tests with US experts, where individual images are analyzed and ranked556

based on their realism, without knowing their source. However, this becomes impractical for557

ablation studies, which require a substantial number of comparisons across multiple models and558

images. Furthermore, it is a!ected by subjective factors such as the level of experience of the559

human graders and their fatigue while performing the assessment. Although we conducted a user560

study with participants who are professionals specializing in abdominal ultrasound to add reliability561

to our findings, we acknowledge that a larger sample size could provide additional insights into the562

generalizability of the results. While the sample size is small, it enabled us to obtain meaningful563

insights that allowed to complement the validation of our approach. Furthermore, it is important564

to notice that most user studies in US simulation research use even smaller sample sizes (between565

4 and 617,18,42,53) than the one presented in this work (16). To the best of our knowledge, only566

one study used more experts for the validation than ours34.567

Measuring the quality of results obtained using unpaired generative models is inherently568

complex since it cannot be done using standardized metrics, such as SSIM and SNR, which569

require ground truth matching between real and artificial scans16. In an e!ort to provide a570

quantitative evaluation, we employed several metrics commonly used in the context of US sim-571

ulation. These metrics enable the assessment of di!erent aspects of the generated images from572

multiple complementary perspectives16,17,34. FID and KID allow to evaluate scans at a macro573

level, characterizing their texture patterns using filters from a pre-trained convolutional neural574

network. The ϑ2 distance in particular is commonly employed for tissue characterization in paired575

image patches16. Alternatively, we used it to characterize intensities using segmentation masks576

to extract organ histograms (Section IV.E.). To complement this analysis, we also compared the577

cumulative distribution of echogenicities of each organ of interest (Figure 5.B). For homogeneous578

structures, such as the liver and the gallbladder, the histograms from SG-CycleGAN outputs were579

more alike to the ones computed from real scans. However, some notorious di!erences persisted580

in the kidney. The kidney has a complex internal anatomical structure (renal pelvis, renal cortex,581
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etc.) which might be the cause of these di!erences. Considering the presence or absence of these582

structures separately, might be a way to account for these di!erences.583

The fact that US images obtained in DICOM format are, by default, JPEG compressed, is584

a drawback. JPEG is a lossy compression format that introduces artifacts in the images. As our585

models were trained to produce artificial scans that match the target distribution, it is expected586

for them to also feature these artifacts. This does not compromise our proposed model nor its587

evaluation, since they are compared to images presenting the same artifacts. In a more general588

context, image data used in the training of the proposed model should be consistent in the589

characteristics of the data where it will be applied. Failing to do so, might notoriously a!ect the590

results.591

VII. Conclusions592

In this paper we introduce a series of contributions to improve anatomical consistency and re-593

duce artifacts in hybrid abdominal US simulators than combine ray-casting-based methods and594

CycleGANs. Our approach preserves anatomical structures and reduces hallucinations both inside595

organs and outside the FoV. We demonstrated that the weakly supervised segmentation-guided596

loss prevents significant alterations in anatomical areas, by penalizing di!erences in predicted597

masks obtained from a pre-trained Unet before and after the cycle consistency term. Addition-598

ally, training with images in polar coordinates constrains the FoV, enabling the model to focus599

on relevant content within non-blank areas. Our model demonstrated to be able to generate600

synthetic US images with fewer unrealistic artifacts, scattering patterns that are compatible with601

the acquisition probe’s azimuthal angle, and a consistent FoV, closely resembling real scans. This602

approach enhances the realism of simulators, aiding in training and localization of abdominal or-603

gans. We believe future research can further improve these results by incorporating more organs604

and simulating abnormalities such as liver tumors or cysts, benefiting training for clinicians. Ad-605

ditionally, eliminating the ray-casting stage by training paired models directly from segmentation606

masks could lead to end-to-end trainable simulators. We encourage researchers to explore these607

promising directions to advance this field.608

VII. CONCLUSIONS



Running title here: Printed April 3, 2025 page 27

Acknowledgments609

This work is funded by ANPCyT PICTs 2020-0045 and PIP GI 2021-2023-11220200102472CO.610

A Kaggle Open Data Research Grant also supported us with a financial grant to purchase the611

GPU used for this research. We thank all the expert radiologists who participated in the user612

study.613

Data availability statement614

The data that support this study was made publicly available by the authors as a Kaggle dataset 5
615

Conflict of interest statement616

The authors declare that they have no conflict of interest.617

References618

619

1 S. Vitale, J. I. Orlando, E. Iarussi, and I. Larrabide, Improving realism in patient-specific620

abdominal ultrasound simulation using CycleGANs, International journal of computer assisted621

radiology and surgery 15, 183–192 (2020).622

2 T. Kameda and N. Taniguchi, Overview of point-of-care abdominal ultrasound in emergency623

and critical care, Journal of Intensive Care 4, 53 (2016).624

3 J. Urbina, S. M. Monks, and S. B. Crawford, Simulation in Ultrasound Training for Obstetrics625

and Gynecology: A Literature Review, Simulation 15 (2021).626

4 V. A. Dinh, J. Y. Fu, S. Lu, A. Chiem, J. C. Fox, and M. Blaivas, Integration of ultra-627

sound in medical education at United States medical schools: a national survey of directors’628

experiences, Journal of ultrasound in medicine 35, 413–419 (2016).629

5 M. Østergaard, C. Ewertsen, L. Konge, E. Albrecht-Beste, and M. B. Nielsen, Simulation-630

based abdominal ultrasound training–a systematic review, Ultraschall in der Medizin-631

European Journal of Ultrasound 37, 253–261 (2016).632

5https://www.kaggle.com/datasets/ignaciorlando/ussimandsegm

Last edited Date :

https://www.kaggle.com/datasets/ignaciorlando/ussimandsegm


page 28 1st author name or however authors to be briefly identified

6 D. J. Canty, J. A. Hayes, D. A. Story, and C. F. Royse, Ultrasound simulator-assisted teaching633

of cardiac anatomy to preclinical anatomy students: A pilot randomized trial of a three-hour634

learning exposure, Anatomical sciences education 8, 21–30 (2015).635

7 B. P. Dromey, D. M. Peebles, and D. V. Stoyanov, A systematic review and meta-analysis636

of the use of high-fidelity simulation in obstetric ultrasound, Simulation in Healthcare 16,637

52–59 (2021).638

8 M. Donnez, F.-X. Carton, F. Le Lann, E. De Schlichting, and M. Chabanas, Realistic639

synthesis of brain tumor resection ultrasound images with a generative adversarial network,640

in Medical Imaging 2021: Image-Guided Procedures, Robotic Interventions, and Modeling,641

volume 11598, pages 637–642, SPIE, 2021.642

9 L. Bargsten and A. Schlaefer, SpeckleGAN: a generative adversarial network with an adaptive643

speckle layer to augment limited training data for ultrasound image processing, International644

journal of computer assisted radiology and surgery 15, 1427–1436 (2020).645

10 R. Shams, R. Hartley, and N. Navab, Real-time simulation of medical ultrasound from CT646

images, in International Conference on Medical Image Computing and Computer-Assisted647

Intervention, pages 734–741, Springer, 2008.648

11 B. Burger, S. Bettinghausen, M. Radle, and J. Hesser, Real-time GPU-based ultrasound649

simulation using deformable mesh models, IEEE transactions on medical imaging 32, 609–650

618 (2012).651

12 O. Mattausch and O. Goksel, Monte-carlo ray-tracing for realistic interactive ultrasound652

simulation, in Proceedings of the Eurographics Workshop on Visual Computing for Biology653

and Medicine, pages 173–181, 2016.654

13 D. Tomar, L. Zhang, T. Portenier, and O. Goksel, Content-preserving unpaired translation655

from simulated to realistic ultrasound images, in Medical Image Computing and Computer656

Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France,657

September 27–October 1, 2021, Proceedings, Part VIII 24, pages 659–669, Springer, 2021.658

14 L. Ruthotto and E. Haber, An introduction to deep generative modeling, GAMM-Mitteilungen659

44, e202100008 (2021).660



Running title here: Printed April 3, 2025 page 29

15 F. Tom and D. Sheet, Simulating patho-realistic ultrasound images using deep generative661

networks with adversarial learning, in 2018 IEEE 15th international symposium on biomedical662

imaging (ISBI 2018), pages 1174–1177, IEEE, 2018.663

16 L. Zhang, T. Portenier, and O. Goksel, Learning ultrasound rendering from cross-sectional664

model slices for simulated training, International Journal of Computer Assisted Radiology665

and Surgery 16, 721–730 (2021).666

17 J. Liang, X. Yang, Y. Huang, H. Li, S. He, X. Hu, Z. Chen, W. Xue, J. Cheng, and D. Ni,667

Sketch guided and progressive growing GAN for realistic and editable ultrasound image syn-668

thesis, Medical Image Analysis 79, 102461 (2022).669

18 G. Pigeau, L. Elbatarny, V. Wu, A. Schonewille, G. Fichtinger, and T. Ungi, Ultrasound670

image simulation with generative adversarial network, in Medical Imaging 2020: Image-671

Guided Procedures, Robotic Interventions, and Modeling, volume 11315, pages 54–60, SPIE,672

2020.673

19 N. J. Cronin, T. Finni, and O. Seynnes, Using deep learning to generate synthetic B-mode674

musculoskeletal ultrasound images, Computer methods and programs in biomedicine 196,675

105583 (2020).676

20 J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired image-to-image translation using677

cycle-consistent adversarial networks, in Proceedings of the IEEE international conference678

on computer vision, pages 2223–2232, 2017.679

21 J. P. Cohen, M. Luck, and S. Honari, Distribution matching losses can hallucinate fea-680

tures in medical image translation, in Medical Image Computing and Computer Assisted681

Intervention–MICCAI 2018: 21st International Conference, Granada, Spain, September 16-682

20, 2018, Proceedings, Part I, pages 529–536, Springer, 2018.683

22 P. Rubi, E. F. Vera, J. Larrabide, M. Calvo, J. D’Amato, and I. Larrabide, Comparison of684

real-time ultrasound simulation models using abdominal CT images, in 12th international685

symposium on medical information processing and analysis, volume 10160, pages 55–63,686

SPIE, 2017.687

Last edited Date :



page 30 1st author name or however authors to be briefly identified

23 O. Ronneberger, P. Fischer, and T. Brox, Unet: Convolutional networks for biomedical688

image segmentation, in International Conference on Medical image computing and computer-689

assisted intervention, pages 234–241, Springer, 2015.690

24 X. Mao, Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, Least squares generative691

adversarial networks, in Proceedings of the IEEE international conference on computer vision,692

pages 2794–2802, 2017.693

25 O. Jimenez-del Toro et al., Cloud-based evaluation of anatomical structure segmentation694

and landmark detection algorithms: VISCERAL anatomy benchmarks, IEEE transactions on695

medical imaging 35, 2459–2475 (2016).696

26 K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in697

Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–698

778, 2016.699

27 S. Dangi and C. Linte, DenseUNet-K: A simplified Densely Connected Fully Convolutional700

Network for Image-to-Image Translation, (2019).701

28 X. Sun, H. Li, and W.-N. Lee, Constrained CycleGAN for e!ective generation of ultrasound702

sector images of improved spatial resolution, Physics in Medicine and Biology (2023).703

29 P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, Image-to-image translation with conditional704

adversarial networks, in Proceedings of the IEEE conference on computer vision and pattern705

recognition, pages 1125–1134, 2017.706

30 D. Ulyanov, A. Vedaldi, and V. Lempitsky, Instance normalization: The missing ingredient707

for fast stylization, arXiv preprint arXiv:1607.08022 (2016).708

31 D. Ulyanov, A. Vedaldi, and V. Lempitsky, Improved texture networks: Maximizing quality709

and diversity in feed-forward stylization and texture synthesis, in Proceedings of the IEEE710

conference on computer vision and pattern recognition, pages 6924–6932, 2017.711

32 D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint712

arXiv:1412.6980 (2014).713



Running title here: Printed April 3, 2025 page 31

33 T. Park, A. A. Efros, R. Zhang, and J.-Y. Zhu, Contrastive learning for unpaired image-to-714

image translation, in Computer Vision–ECCV 2020: 16th European Conference, Glasgow,715

UK, August 23–28, 2020, Proceedings, Part IX 16, pages 319–345, Springer, 2020.716

34 D. Tomar, L. Zhang, T. Portenier, and O. Goksel, Content-preserving unpaired translation717

from simulated to realistic ultrasound images, in International Conference on Medical Image718

Computing and Computer-Assisted Intervention, pages 659–669, Springer, 2021.719

35 D. Torbunov, Y. Huang, H.-H. Tseng, H. Yu, J. Huang, S. Yoo, M. Lin, B. Viren, and Y. Ren,720

Rethinking CycleGAN: Improving Quality of GANs for Unpaired Image-to-Image Translation,721

arXiv preprint arXiv:2303.16280 (2023).722

36 B. Kim, G. Kwon, K. Kim, and J. C. Ye, Unpaired Image-to-Image Translation via Neural723

Schr\” odinger Bridge, arXiv preprint arXiv:2305.15086 (2023).724

37 X. Ma, N. Anantrasirichai, S. Bolomytis, and A. Achim, PMT: Partial-Modality Translation725

Based on Di!usion Models for Prostate Magnetic Resonance and Ultrasound Image Registra-726

tion, in Annual Conference on Medical Image Understanding and Analysis, pages 285–297,727

Springer, 2024.728

38 H. Alqahtani, M. Kavakli-Thorne, G. Kumar, and F. SBSSTC, An analysis of evaluation729

metrics of gans, in International Conference on Information Technology and Applications730

(ICITA), volume 7, 2019.731

39 A. Borji, Pros and cons of GAN evaluation measures: New developments, Computer Vision732

and Image Understanding 215, 103329 (2022).733

40 M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, GANs Trained by a734

Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, in Advances in Neural735

Information Processing Systems, volume 30, Curran Associates, Inc., 2017.736
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